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1 INTRODUCTION

Detail knowledge of the beam optics is crucial for successful performance of an accelerator. It is
important to have tools for measurement and correction of beta-beating, coupling, for detection of
sources of optics imperfections.

There are a number of methods to address these problems which can be classified into two
major categories. The first one comprises methods based on driving the closed orbit motion
(differential orbits [1], AC dipole [2]), while the others exploit free betatron oscillations excited by a
kicker or injection errors.

The method considered in the present paper belongs to the second category and involves
analysis of turn-by-turn beam position into normal modes of betatron oscillations. To do this we may
Fourier analyze the data or try to fit it with a superposition of a limited number of harmonic oscillators.
The second approach with simultaneous use of data from all available BPMs leads to the so-called
Independent Component Analysis [3]. In the case of weakly coupled motion and low level of noise the
Fourier analysis which we use here is no less efficient but significantly faster.

An important question is what representations of lattice functions to use. Many authors [4, 5, 6]
employ the Edwards-Teng parameterization of the transfer matrix [7]. However, the Mais-Ripken
parameterization [8] is more suitable for analysis of TBT data since it explicitly deals with the normal
modes of coupled oscillations. We use the language of the transfer matrix eigenvectors which are
closely related to the Mais-Ripken lattice functions (see e.g. Ref.[9]) and treat the expansion
coefficients as new dynamic variables (normal forms) [10, 11]. In Section 2 we briefly remind the
necessary formalism.

In principle, no a priori conception of the machine optics is necessary for analysis of TBT data.
In Section 3 we discuss how to perform the Model Independent Analysis, though do not use it directly
for practical calculations.

In practice there is always some ideal (design) optics which can be used as the starting point,
the goals of the measurements being to find deviations from the ideal optics (e.g. beta-beating, “tilt” of
the normal modes), detect the sources of perturbation, evaluate their strength and necessary changes in
correction circuits to compensate for these perturbations.

These goals require different conditions of the measurements. It is easier to search for the optics
imperfections and their sources when the tunes are sufficiently far from resonance values, whereas for
evaluation of the global effects (e.g. closest tune approach which is essentially the absolute value of the
difference resonance driving term) it is better to put the tunes close to the resonance.

In the near-resonance case the relation between the source strength and the observable effects of
perturbation is nonlinear, so that the higher-order perturbation theory should be invoked. We put the
details of such theory (based on the general Hamiltonian perturbation theory as presented in Ref.[11])
in Appendix A.

Application of the developed methods, including evaluation of possible BPM tilts and
calibration errors is discussed in Section 4 and exemplified by the case of the Tevatron collision optics.

Error estimates are given in Appendices B and C. It is shown that in the presence of random
noise the tune error decreases with the number of turns N only as 1/N**. Appendix B presents also an
improved interpolation formula for precise tune determination using discrete Fourier transform.

2 DESCRIPTION OF COUPLED LINEAR MOTION

First let us introduce notation conventions: underlined characters will denote (column) phase space
vectors, upright capital letters designate matrices, bilinear forms of dynamic variables (such as
Hamiltonian) will be denoted in cursive.



We choose the generalized azimuth 8=s/R as independent variable (R and s being the machine

average radius and the path length), and
’ B s ’ Bs T
z2=(xx Zpr’ Y,y +23px) 2.1

as the phase space vector, the prime denotes differentiation by s (we will use the dot for differentiation
by 6) and superscript T means transposition.

In linear Hamiltonian systems considered in the present report the Hamiltonian is a bilinear
function of dynamic variables

1
H(z2,0) =9 =z Hy(®)z 22)
with symmetric matrix Hy. The equations of motion can be written in the form
0
Z2=S—H =SH;z (2.3)
dz
where
S=S,®S S, = 0 1 2.4)
=92 22 2271 o .
The phase space vectors at two locations &, 8, are related via transfer matrix M(8,, 6,):
2(6,) =M(6,, 6) z(6,), (2.5)
which satisfies the equation
%M(@, 8,) = SH,M(6,6,) (2.6)

It is easy to verify by differentiation that the transfer matrix satisfies the symplecticity condition:
M’SM=S, (2.7)

2.1 Eigenvectors of the transfer matrix
Of special importance is the eigensystem of the 1-turn transfer matrix (from 8 to 8+27x)

2,0,0)=MQ2x+6,6)v,(6). (2.8)

The eigenvalues A, form reciprocal pairs [9] and, outside the stopbands of half-integer and sum
resonances, lie on a unit circle. We will numerate and arrange them in the following order:

A =exp(27iQy), Ay =X, Ay =exp(27iQ,), Ay = A5, (2.9)

Equation (2.8) defines an eigenvector up to a (complex) constant. It is natural (but by no means
necessary) to impose the condition

v, =v,, n=1,2. (2.10)

Z—n

To write down the orthonormality condition let us build a matrix, V, using the eigenvectors as its
columns:

Vik = (@, )i 2.11)

where n; , k =1,..., 4 is the sequence 1, -1, 2, -2. Now we can write the orthonormality condition as



VISV =-ius, (2.12)

where the normalization constant & must be real owing to condition (2.10), our choice being x = 2.

This condition still leaves the phases of eigenvectors v, undefined and we can use this freedom
to our best advantage. First we require that at the origin (€ = 0) the spatial components (v;); and (v»)3
be real. To define the phases at other locations let us notice that by propagating an eigenvector from 8,
to @, with transfer matrix M(6,, €,) we get the eigenvector at €, which corresponds to the same
eigenvalue. Multiplying by exponentials exp(-iQ, 8 ) we can make the eigenvectors 2 7-periodic:

0, 0)=¢" 27 M©,0)0,0), n=12, (2.13)
or, in the matrix form,

V(8) = M(6, 0) V(O)A(-6) (2.14)
where

A(0) = diag(e™@l | ¢7A0 100 7100y (2.15)

With this convention the transfer matrix can be expressed via the eigenvectors as

M(6,,6,) = —éwez )A@B,-6,)SVT(8)S. (2.16)

Let us note for later reference that by differentiating eq.(2.14) we can obtain a differential
equation for matrix V,

V=SH,V-iVQ, (2.17)
where Q = diag(Q1, -01, 02, -02).

2.2 Complex canonical variables (normal forms)
The phase space vector (2.1) can be expanded in eigenvectors with coefficients satisfying the relations

a_, = aZ, n =1, 2 by virtue of condition (2.10). In the matrix form the expansion reads

z2=V(@)a, (2.18)

where we introduced vector of coefficients a = (ay, a;, a5, a;)T which may be regarded as a new
phase space vector [10, 11]. The inverse transformation is given by

a=--sV'(©®)Sz. (2.19)
Y7,
According to eqs.(2.14) and (2.18) coefficients a, propagate as
a, (@) =e%%a,, (2.20)

so that the introduced variables are in the normal form.
Though matrix V is not symplectic when g # i, transformation (2.18) is still canonical in the

. e * . . . . . .
sense that coefficients a, , a, form canonical pairs satisfying Hamilton’s equations

a, = J U, a,’jz—iv, n=1,2, or gzsiv (2.21)

*
0‘)Cl a, a




with Hamiltonian

V=Uy =i . Q,a,a, . (2.22)

n=1,2
Let us show that the equations for a, retain the Hamiltonian form (2.21) even in the presence of
perturbations when the transfer matrix M generated by unperturbed Hamiltonian Hp and its
eigenvectors no longer describe the exact motion but still are used in transformation (2.18). Namely, let

the Hamiltonian #'(z,60)=H,+H; be a sum of unperturbed part H, given by eq.(2.2) and

perturbation #; (which may contain terms of higher order in z as well).
Differentiating eq.(2.18) and using the inverse of eq.(2.12) and eq.(2.17) we get

Q:V*@—V@:V*ﬂmwg+w*ﬂ{}ﬂﬂ—VH$%VdVQm
a

(2.23)
i, 0 0
U Oda 1+1Qa da

SO thatan,a: are still canonical variables and the transformed Hamiltonian is U = Up+ U; with
unperturbed part Uy given by eq.(2.22) and

v@ﬁhé%@@| (2.24)

z=V(0)a

Relations (2.18, 2.21-24) are general ones and can be used in analysis of nonlinear systems as
well; the choice of normalization constant # being the matter of personal preference. For the following
we set i =2.

2.3  Uncoupled lattice functions

In the absence of coupling the transfer matrix splits into a direct sum of 2X2 matrices which
eigenvectors can be parameterized as follows:

VB

v,@=eMi-a, | v =v,
\ By

where @,=¢,-0,0 is periodic phase function, ¢, and £, are the Twiss functions for mode n (in the
following we assume mode 1 to be nearly horizontal and mode 2 to be nearly vertical).
For the transfer matrix we have the well known expression which we cite for later reference:

*

n=1,2, (2.25)

(k)

'(lj) (cosA@, +a'/ sinAg,) VB BB sinAg,
0 _ P (2.26)
M (ek’ej)_ (D 5 (k) y o (@) (k) @) ’
_(+a,)a, " )sinAg, — (@, —a, " )cosAg, n (cosAp, —a® sinAg,)

; k
e A0

where A@, =9, P-9,, superscripts j, k mark locations at which the lattice functions were taken.



24 Coupled lattice functions

In the case of coupled motion we use the modification of Mais-Ripken parameterization which was
proposed by Lebedev and Bogaczl (see Ref.[12]):

' 9, ll-w)—a j s l0—a
v,0) = (e [B,y. % OB e ==
Xl yl

' 9, 0=y i, ig,, [l-@)—ay, 4
0,(0)={e 2 (B, P2 =22 02 B P T
\/IBXZ \I:ByZ

(2.27)

2.5 Edwards-Teng parameterization

For the sake of completeness let us mention the Edwards-Teng parameterization which historically
appeared first [7]. At every location in the ring the 1-turn transfer matrix M(6+27,6) can be

transformed into the block-diagonal form by similarity transformation M = RMR ' with matrix
R=R(6) of the type

-1 .
R = Icosd D sin® (2.28)
D sin® Icos®

where I is 2x2 identity matrix and D=D(6) is some 2x2 symplectic matrix.

The eigenvectors of the decoupled transfer matrix M are direct sums 71®0, 0D » and their
complex conjugates with v, being of the form (2.25) and 0 = (0, 0)".

Lebedev and Bogacz [12] established relations between the Edwards-Teng and Mais-Ripken
lattice functions. Namely, they showed that the phase advances coincide (@1 = @1, 2= @,,), while
the S~ functions are related as

Bya
p=La g o2 (2.29)
l-w l-w
For the “symplectic rotation” angle & they found
sin” @ =@ (2.30)

Though many authors [4, 5, 6] employ the Edwards-Teng parameterization, we prefer to work
with the Mais-Ripken functions since they are immediately related to particle coordinates.

3 MODEL-INDEPENDENT ANALYSIS OF TBT DATA

In principle the lattice functions can be found from TBT data without resorting to the perturbation
analysis, so that no a priori conception of the machine optics is necessary.

First of all, the normal mode tunes Q;, Q> should be found using continuous Fourier transform
or interpolated FFT as discussed in Appendix B (data from one BPM per plane is usually sufficient).
To proceed further let us note that the generalized azimuth @=s/R plays two roles: it marks locations

' An important step made by Lebedev and Bogacz was to show explicitly how Mais-Ripken’s pfunctions can be expressed
via & and f- functions. They introduced an auxiliary function, denoted here as @, which makes the expressions much
simpler.



around the ring (0 < 8(<27x) and serves as continuously advancing independent variable taking value
0 =60y+2mk-1)on k™ turn at location 6.

Taking into account eqs.(2.18) and (2.20) we expect the turn-by-turn beam position at j BPM
location to be given by

xjk = ZVlm (0] )Clm()e
m=1,2

OnlOyramk=Dl o 3.1)

The vertical displacement can be expressed analogously via the 31 components of the eigenvectors.
The Fourier components of the beam position (3.1) at the normal mode tunes are immediately
related to the spatial components of eigenvectors:

1 y =27 - ] me‘ 1 .
Xj(Qm):Wijke S TR VI +O(0), j=low N,
k=1 (3.2)

1Y om0 e : 1

Y(Q,) == yge oV =y (@)a,0e %" +0(=), 1=1..N,
N3 N

where N;, and N, are the numbers of horizontal and vertical BPMs respectively.

Recalling definitions (2.11) and (2.27) we get for the horizontal Mais-Ripken optics functions at
horizontal BPMs

Ban©@) A X (0 o Py @u(8)) =arglX ;(Q,)  apol, m=1,2, (3.3)

and analogously for the vertical functions at vertical BPMs.

We may apply formulas (3.2), (3.3) to the real data (error estimates are given in Appendix C).
The remaining question is how to find the invariant amplitudes la,l, the argument of a,,0 not being an
issue since the betatron phase is defined up to a constant addend.

3.1 Determination of the invariant amplitudes

The difficulty is that the invariant amplitude of oscillations is determined not only by the kick strength
but also by the optics functions yet to be found. Provided the BPMs sample the ring densely enough
there is a principal solution which can be easier explained in the case of uncoupled lattice.

In the uncoupled case the tunes (which are already known) can be expressed via the integrals of
inverse f-functions. We can approximate the integrals by the sums (horizontal plane for instance)

1 ¢ds ~|ax0|2§’: Dj

=—¢— : 3.4
22° B 2 HIX ;0P oY

o

where p; are weight coefficients [p;j=R(8;.1-6;.1)/2 by the trapezoid rule], and find the invariant
amplitudes. Probably this method can be generalized on the case of coupled motion as well. However,
it is not practical since: i) BPMs usually do not sample the ring sufficiently well, ii) the sum in eq.(3.4)
is dominated by BPMs at low beta locations for which the signal to noise ratio is the lowest.

3.2  5-BPM algorithm

It is possible to circumvent the problem of determination of the invariant amplitudes if there is a region
of the ring with known focusing properties. In such region S-functions can be found from the measured
phase advances.



Since the focusing properties of the lattice assumed to be known we can calculate the transfer
matrix between the BPMs, in particular its M, and M34 elements which contain only S~ and phase
functions for the same plane, e.g.

M,(8;.6,) = ;Z\/ﬁm (07) B (6)) SN[, (6 ;) = P, ()] (3.5)

For Ngpym in one plane we have Nppm(Ngpm -1)/2 equations while the number of unknowns is 2 Ngpm
(B and B, or B, and B at each BPM). Correspondingly, the minimum number of BPMs per plane
needed is Ngpy = 5. With S-functions at these 5 BPMs found we may use the first of eqs.(3.3) to
evaluate the invariant amplitudes and then find S-functions in the rest of the ring.

This method requires data for both normal modes and is prone to errors, especially for the
cross-plane functions.

4 PERTURBATION APPROACH

In practice there is always some ideal (design) optics which can be used as the first approximation. The
goal of optics measurements is not only to find actual (perturbed) optics functions but also to detect the
sources of perturbation and evaluate necessary changes in correction circuits. The problem may be
complicated by BPM tilts and calibration errors. To unwind all these effects we have to resort to the
method of successive approximations.

First of all let us establish relations between sources of perturbation and observable effects on
beta-functions and phase advances assuming the perturbed motion to be stable (which requires the
tunes to lie outside the stopbands of half-integer and sum resonances).

We may still use eq.(2.18) with the ideal eigenvectors but treat it now just as a linear
transformation of variables [10]. Thus defined vector a is a linear superposition of the “true” normal
forms A:

a=T"'(6)4 (4.1)

(it is more convenient to define the direct transformation as A =T g in order to make the analysis
presented in Appendix A simpler). Given the ideal optics functions and the transformation matrix T we
can find the new eigenvectors matrix as

\% Videaw T~ (4.2)

perturbed —

and, eventually, the perturbed lattice functions.

Appendix A describes a recipe (based on the Lie-transform theory) for finding T for a given
perturbing Hamiltonian. Though our system is linear, the observable effects of perturbation (described
by matrix T) are nonlinear in the perturbing element strength.

4.1 Uncoupled optics functions and BPM calibration

Let us first consider an uncoupled lattice. To determine the invariant amplitudes A,,0 we can use the
fact that the average value of the inverse S-function over many periods of betatron oscillations is not
sensitive to beta-beating. Retaining in the sum only BPMs in regular sections (such as arcs) we get a
rough estimate for the amplitude

1 1
Ao 12~ / (4.3)
’ §ﬁxo<e,-> %“IXJ-(QX)IZ




300 T

T 300 T T T T T T
design | design
measured ¢ i measured

250

*- 0

*
————
L J

200
E 150
100 fef

()

50

0 1000 2000 3000 4000 5000 6000 o] 1000 2000 aooo 4000 5000 6000

s[m] s[m]

FIG. 1 (color). Measured and design Tevatron collision optics functions with tunes shifted to half-integer
values vs. distance from F18 marker: left - £, at horizontal BPMs, right - £3, at vertical BPMs

and, with the help of eqs.(3.3), for the optics functions.

Figure 1 presents thus found main beta-functions with the Tevatron collision optics as functions
of the distance from F18 marker®. The tunes were intentionally shifted close to half-integer values
0. =20.518, O, = 20.514 which resulted in strong beta-beating.

Following the lead of section 3.2 it is possible to obtain a more precise estimate of the invariant
amplitude provided there are regions free of large focusing perturbations. Now that the optics is
uncoupled we need only 3 BPMs per plane to calculate the SB-functions from the measured phase
advances as was first noted by P. Castro-Garcia [13].

Taking the ideal transfer matrix between BPMs and measured phase advances we obtain
equations for the product of S-functions [confer eq.(2.26)]:

BO)BO)=mF, my =1M(6;,0,)/sin[@(6) - p©B))]I. 4.4)

Applying this relation to pairs in a group of three BPMs we find the solution (provided the phase
advance between any two of BPMs is not a multiple of 7):

3
,B( )(HJ) zmjkmﬂ /mkl,
2
B @) =mjmy Imy, (4.5)
1
B @) =mymj Imj.
where superscripts denote BPM position in the group (from the right to the left).
This algorithm (which we will refer to as the 3-BPM algorithm) has in fact a greater potential: it
permits to check if a particular region is really free of focusing perturbations and find BPM calibration
errors.

Moving the 3-BPM window across a particular BPM we obtain three values, ,B("), n=1,2,3,
for S-function at its location; the scatter in these values tells us whether this BPM belongs to a

* Locations in the Tevatron are labeled in the proton motion direction with a letter denoting the sector (A-F) and two
numbers, the first one (0-4) being the “house” and the second one being the position in it. Interaction points are in the
beginning of sectors B and D, the horizontal kicker used in TBT measurements is located at F17 which explains the choice
of MF18 as the starting point in calculations.
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derived from phase advances to those inferred from function w, describing horizontal beta-beating seen
amplitude of oscillations: blue squares - when the in Fig.la with fudging of horizontal BPM
particular BPM is on the left side, green triangles — in calibration factors (blue triangles and red squares)
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The count starts from F19 HBPM.

perturbation-free region. Fig. 2 shows the ratios of thus obtained values of the horizontal S-function to
the approximate £, values derived from amplitude of oscillations with the help of egs.(3.3) and (4.3). One
can see strong effect of focusing perturbations in the interaction regions and other straight sections.

In the perturbation-free regions where all three " values for a given BPM are close to the
average

_ 13
ﬂ(é’j)=52ﬂ(”)(0,-) (4.6)
n=l1

we may consider the ratio

1 =B 0))1 B ©0)). BP0 X (0] Ay I, (4.7)

as a relative calibration factor’ (defined as r = Xactual / Xreported)-

Now we can get a better estimate for the invariant amplitudes by requiring the average factors
<r> over “good” BPMs to be equal to 1. In the considered example of the Tevatron collision optics
these average values happened to be <r,>=1.014, <r,>=1.012 proving the validity of estimate (4.3) in
the presence of strong beta-beating.

The 3-BPM algorithm fails in the regions containing sources of focusing perturbations, still we
may try to separate the effects of focusing and calibration errors.

Let us develop the first of eqs.(3.2) using eq.(A.23) and introducing calibration factors:

- i0.0);
FiX 0= Vigea T 11 9% A =

)
+ -ip\)—iQ 6 +2 , 4.8
ﬁ D (e 016 +0:6 Jcoshu, - A,y +e 050 ~I00; iargw, +2i0.6; sinhu, - A ) (4.8)
%/—J
C; S

? It should be noted that by using only TBT information it is not possible to determine absolute calibration factors.
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our goal being to find function w, [relation of its absolute value to u, is given in eq.(A.23)] and
calibration errors.

Usually there are only few elements with strong focusing errors, let us assume that between two
adjacent BPMs (say, j-th and (j +1)-th) there is no such elements. Then according to eq.(A.20) C;, S;
have constant values at these BPMs which can be found as functions of calibration factors rj, rj41.

Thus determined Cj, S; (index j denotes the interval between j-th and (j +1)-th BPMs) may
oscillate strongly from one interval to another. By fudging the calibration factors functions Cj, S; can be
made to vary more smoothly over a chosen range even if it includes perturbing elements.

Figure 3 shows function exp(2iQ.60)-w.(6) calculated with all BPM calibration factors set to 1
(dashed lines) and with calibration factors found with either the 3-BPM algorithm (in perturbation-free
regions) or the described above fudging procedure (triangles and squares). The largest calibration errors
were found for BO collision point monitors (HBOU and HBOD): r34 = 0.964, r3s=1.055, and for HD12
monitor downstream of DO: r76 = 1.075. It can be seen that the fudging reduces oscillations in Iw,| while
preserving its abrupt changes indicating the position of perturbing elements.

4.2 Coupled optics functions

For simplicity we assume the ideal lattice to be uncoupled and consider coupling as a perturbation.
Let us work out eqs.(3.2) using transformation matrix (A.37) and allowing for BPM tilts. If the
first normal mode was excited we have for the Fourier components of the TBT beam positions

X (1) =+/Bxo ("0 4+ 7% seck u,)cos K AloeiQﬂj ,

i - . | (4.9)
Y, (O)) =I IByO (e l¢y0u+ _el¢y0u_) _ /ﬁxoel{l’xo sin y;]cos & AloezQﬂ, ’

tan K

where x = \/ lu_ 1> —lu + 2 , function u, includes effect of focusing errors (see section A.2) as well as

second-order coupling effect (w,,/2) given by eq.(A.34). BPM tilt angle y is considered positive for tilt
from x to y.
If the second mode was excited we analogously have

Y1(02)=1/Py0 (ei{ﬁy0 te P seck y)cos K AzoeiQZ‘s’l i

p (4.10)

tank  _: . . ) . ‘
X (0y) = Bro az (e ’¢X0u+ +elfoy*y 4 ,Byoel¢~"° sm;(j]COSIcAZOelQ2 7

Before discussing the algorithm for finding u+ let us note that in egs. (4.9), (4.10) we neglected
higher order terms in u,, but retained those in u+ (represented by x). Higher order terms in u+ may be
significant only when the tunes are close to a coupling resonance (sum and/or difference), but then
these functions are nearly constant around the ring by the absolute value. Therefore & can always be
assumed constant.

Again, the first step is to find the invariant amplitudes A,,. To get rid of the effect of beta-
beating we can use eq.(4.3) and obtain an estimate for cos k- A,,o. Dividing by this product eqs.(4.9) or
eqs.(4.10) (depending on which mode has been excited) we get for each BPM in the orthogonal plane
just one equation for two unknowns: z; =u, tan k'/ k. Therefore some additional relation is necessary.

11
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FIG. 4 (Color). Real and imaginary parts of functions w, (left) and w. (right) describing linear coupling
found from the first (horizontal) mode seen in the vertical BPMs (blue and red) and the second mode seen
in the horizontal BPMs (cyan and magenta) in the case of the Tevatron collision optics.

As shown in section A.4, in regions free of couplers the first-order generating functions behave
as w+(8) = const X exp[-i(QxE0y0) € ]. Assuming such dependence for z+ in the interval between two
BPMs of the same orientation* we get two additional equations allowing to find z at these BPMs and
in the interval between them. Inverting the definition of z+ and using eq.(A.38) we obtain the first-order
generating functions

wy =2, (1 Flzy 1P £l 22 17 /3) (4.11)

Figure 4 presents functions exp[i(Q,+0Q,)8]-w+(€) found from the first (horizontal) mode seen
in the vertical BPMs and the second (vertical) mode in the horizontal BPMs in the case of the Tevatron
collision optics at nominal tunes Q. =20.585, O, =20.575. Good agreement of the two sets of values
demonstrates reliability of the method.

By differentiating the generating functions we can find the distribution functions of couplers
defined in eq.(A.27):

C,(6) = 2ie %00 %ei%ig W (6), 4.12)

where Qo+ = Oy £ O,0. Jumps in w+ correspond to the presence of strong couplers. The largest jump in
Figs. 4 occurs at approximately 800m from the origin and corresponds to two SQAOQ skew quadrupoles
used for coupling compensation. Another jump happens downstream of DO at about 4100m and was
traced to a tilt of D16 defocusing quadrupole.

The knowledge of C:+, w+ (and x) permits to calculate the second order functions wy,, [see
eqgs.(A.34)] and separate the effects of focusing errors and coupling on beta-beating. Figure 5 shows the
absolute values of functions w,, as determined from data (and presented in Fig.3 for the horizontal
plane) and with the coupling contribution subtracted. One can see that the coupling contribution
reaches 20% and in its absence the amplitude of beta-beating would have been approximately equal in
both planes.

*tis easy to see that two BPMs of different orientation (one horizontal and one vertical) can not be used even when data
for both normal modes is available since (after z, exclusion) the resulting equation, exp(2i@y) z. + exp(2ig,) z =rh.s., has
zero determinant.
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' ' w,| total . 4.3 Global coupling coefficients
|wy| total -
08 r . . Iﬁﬂ wo zgﬂgl:ﬁg st Let ns be the closest integers to the sum and difference
025 Low*e e, :b of the tunes, n+=Round(Q.* Q,). The resonance
s g:#{m Iy ¥ N . P driving terms (which can also be called the global
' s o™ .’\‘.aw'ﬂﬂ' - '.;*"‘U'n';jv coupling coefficients) are the corresponding Fourier
015 |- S R .;"“\"”‘ N . harmonics of the couplers distribution:
- L3
. 2
01 F T 1 4 ln+9
) ey =—— [e™0C.db. (4.13)
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Of these two values c. bears more practical importance

since its absolute value determines the closest tune
approach (see Appendix D). Substitution of eq.(4.12)
into eq.(4.13) gives the relation between the coupling

s[m]
FIG. 5 (Color). Absolute values of functions w,,
as determined from data with (red and blue) and

without (magenta and cyan) the coupling coefficients and generating functions:
contribution.
Q —n 2 )
cy = —% [e"0w.d6 = 2(Qps —n)wi™. (4.14)
0

This relation requires TBT data acquisition from all BPMs around the ring which may be too lengthy a
process for practical application of this method.

The solution follows from the observation made in Appendix A [see eq.(A.31)] that close to the
resonance Q. * Q, = n+ the corresponding generating function is dominated by the resonance harmonic,
w+( 60 )=constxexp(-in+@), so that any part of the ring is representative of the whole. Working close to a
resonance also reduces error due to BPM tilts. However, there is a minor complications since the tunes
which enter eq.(4.14) are not directly measured tunes but the would-have-been tunes in the absence of
coupling.

The exact relation between the ideal and perturbed tunes in the near-resonance case is given in
Appendix D. For practical purposes we can limit ourselves to the second order correction in the
coupling strength to obtain

L 2Qs ) 2y
1FI1Z, P Flzz 17 /3

Qs —ny W)

JIF4Tw, 1P

where O+ = O, F O, are combinations of the measured tunes, the bar means averaging with exponential
exp(in+@) over the available range:

(4.15)

Cy = -2

1%

— in, @

Zo=— [e™07,d0. (4.16)
6, -6, g[

44 BPM tilts

When finding generating functions w+ from eqs.(4.9) or eqs.(4.10) we assumed the BPM tilts to be
known. In the interval between two BPMs functions w+ depend on tilts of only these two BPMs. If one
of the BPMs has large unaccounted tilt it will produce strong oscillations of functions ws in the
adjacent intervals. By fudging the tilt angles j;, functions w+ can be made to vary smoothly over a
chosen range even if it includes strong couplers. Such a procedure had already been applied to

13



0T8I ' ‘ w| = functions shown in Fig. 4 in interaction regions and

0.6 | pufwintitudaing ¢ some of straight sections. Figure 6 demonstrates the

oral T s ;,F?r'\;;‘ . | effect of fudging of the horizontal BPM tilt on w; in the
. | fl ‘f s interval which includes DO interaction region. The

012 F /A i ‘.".'.7‘_,(".' 1  largest angle of +4° was found for HC44 monitor.

o1 b -/:‘p L e | Let us note that a systematic tilt of BPMs in arc

ol Ve ‘ull‘-l‘"':ﬁ | | cells with equal phase advance in both planes

¥ | introduces systematic error in the difference resonance
006 - I'.I'I \ A . generating function of magnitude
004 . “ Tr : :
65 70 75 80 85 80

4.17)

I—sinu/2 .
: | ow_ I= /— sin
Horizontal BEFM # 1+ Sll’l/,l/z ;L/
where (£ is the betatron phase advance per cell. In the
Tevatron =25 and systematic tilt by 1° would

produce an error lowl=0.009. With Q =.01 the
resulting error in coupling coefficient is fairly small:

FIG. 6 (Color). Absolute value of function w+
determined from the second mode seen in the
horizontal BPMs in the region C36-D28 before
(red) and after (blue) fudging of BPM tilts.

[dc| = 0.0002.
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APPENDIX A. LIE-TRANSFORM PERTURBATION THEORY

In the presence of perturbations we may use eq.(2.18) with the ideal matrix V just as a linear
transformation of variables. Let us make an important remark here. By making the eigenvectors
periodic with the help of the exponential factor in eq.(2.13) we ensured the periodicity in € of the
transformed Hamiltonian U and will impose the periodicity condition on all lattice functions that will

appear in the following — e.g. new Hamiltonian X, generating function 7/— not always mentioning it.
Now let us rewrite the Hamiltonian U introducing the perturbation parameter €

U(a, 0; &) = Uy(a) + £V (a, 0) (A.D)

where U is given by eq.(2.22) with the ideal tunes, Q9, QO20, and U, is given by eq.(2.24) with y=2.
Parameter &, introduced for later convenience, varies from €=0 for the ideal lattice to £€=1 for the real
lattice.

Since we assume our system still to be linear (and stable), there should be “true” normal forms,
A; our goal is to find their relation to the original dynamic variables, a.

By saying that the new variables A are “true” normal forms we mean that Hamiltonian, X,
which governs motion in these variables,

d 0

—A=S—K,

A2
A6~ " 0A 4.2)

is of the type (2.22) with new (perturbed) tunes Q;, Q>.

Vector A is a linear combination of the original variables with coefficients depending on
parameters €and &

14



A=T(g O)a (A.3)
It satisfies the boundary condition Al,_,,=a, or, for the transformation matrix T:
Tl.0=1, (A.4)

I being the identity matrix. It is obvious that K |._,,=T.

By properly scaling variables A with € we can ensure matrix T being unimodular (and therefore
symplectic since A is in normal form for all values of &); the knowledge of T enables us to find the
matrix of new eigenvectors V,,ermrbeFVidmlT'l and, eventually, the perturbed lattice functions.

In the linear case under consideration, the Hamiltonians (both original and new) are bilinear
forms:

‘U:%aTUa K:%AT KA, (A.5)

with symmetric matrices UT:U, K’=K. Making notice that

4 4 _a—Ta TSUa = (—+TSU)T‘1 A
A6~ 96~

=SK A
we get an equation linking T and K:

oT _ =SKT-TSU (A.6)

20
Despite its apparent simplicity, eq.(A.6) is not convenient to use since it does not incorporate
the condition of matrix T symplecticity. To do this we may recall the powerful Lie-transform
perturbation theory [11]. Specifically, we may consider the transition from the ideal to the perturbed
system as a “motion” governed by some Hamiltonian, 94, with the perturbation parameter &€ playing the
role of time:

iA siw SWA, (A.7)
de— 0A
where W is the (symmetric) matrix of bilinear form 7/: W = ATWA /2. Then the transformation matrix
T will be symplectic by construction. Substituting eq.(A.3) into eq.(A.7) we obtain an equation for its
evolution with “time” &
B_T =SWT (A.8)
o€
Now, equating mixed derivatives of T obtained from eqs.(A.6), (A.8) we arrive at the matrix
analogue of Dewar’s equation (see e.g. Ref.[14])

W | wsk—ksw = 2K (T‘l)Ta—U

26 e o€
Expansion of this equation in powers of &€ leads to the matrix analogue of the Deprit equations. But let
us first note that if matrix SW(¢) is self-commutative at different values of &€, i.e. if W(&)SW(&) =
W(&)SW(&), then

T (A.9)
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T(e) = exp[S [ W(&")de']. (A.10)

A.1  Power expansion

Generally we have to resort to power expansion in €:

o _.n

U= Z “u,. K:Z%Kn, K, = Uy,

n! —
n=0 n=0 (A.11)
" -1
W = Z—'WM, T= Z—'Tn, T, =1
n=0 h: n=0 h:
From eq.(A.8) and the identity TT'=I we immediately get the recursion relations
< n!
Ty =S Zﬁwn—kHTk’
o k!(n—k)!
(A.12)
-1 T
(T pn _—Z (T )i SWgn

~ k!(n _k)v

Substitution of ansatz (A.11) into eq.(A.9) leads to a chain of matrix analogues of the Deprit
equations (see e.g. Ref.[11]). Here we will not give the general formula but limit ourselves to the first
three of these equations:

lA)Wl :Kl_Ul’
DW, =K,—U,—(W;,K;+U)), (A.13)
DW; =K;3-U;—(W;, K, +2U,) = (W,, 2K+ U;) — (W, (W,,U))),

where the binary matrix operation (A, B)=ASB-BSA and operator D, DW= dg W+ (W, K), were

introduced.
To achieve our goal - find transformation T which brings Hamiltonian K to the form (2.22) - the
matrices W, should absorb the offending terms from the r.h.s. of eqs.(A.13). There can be terms which

are not in the range of operator 15, such terms have to be relegated to K,. Since we excluded the
resonance case from consideration these only can be the tuneshift terms.

A.2  Focusing perturbations

Let us consider an uncoupled lattice and present formulas for only one plane (say, horizontal). The
matrix of the ideal Hamiltonian is

0 i
Ko=Ug=| ) ™ (A.14)
ZQO 0
Now let us introduce quadrupole field errors with gradient
1 0
kj =——0B A.15
! Bpox ° ( )
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We have for the perturbing Hamiltonian (the sign of k; should be reversed for the vertical plane):

U = Rkix” = DRk foaa” + 2 Rl fy (e Pa” +e 7 ha ™), (A.16)

The mean value over the machine circumference of the first term in the r.h.s. of eq.(A.16) (more
precisely, of its matrix) is not in the range of operator D and therefore constitutes X;:

i 27R 1 2R
=— |k Bnds aa” = =— |k Bnds, A.17
Ky . £ 15 o0 iz £ 1B ( )

the leftover being absorbed by /. Since the effect of the first term can not be resonantly enhanced we
will ignore it altogether and instead focus on the last two terms in the r.h.s. of eq.(A.16) presented by
matrix

50 21

ige 0 1

U, = |, g=—Rkf,. A.18)
1 { 0 lge “2ig, J 8 2 1180 (

This matrix is well within the range of operator D so it does not contribute to K. Since we have

neglected the contribution from the first term we have K;=0. Together with the periodicity condition,
Wi(2m)= W1(0), the first of eqs.(A.13) yields solution for Wi:

" 0 2z e—ZiQO[9—7tsign(0—t9/)]+2i¢’0(‘9/)
Wl = N W(e) ="

- 0)do’ . A19
0 ) 2 sin 270, 8(@) (A.19)

(we recalled definition ¢=¢-08).
It is easy to see that in perturbation-free regions

w( 8 )=constxexp(-2iQv8), (A.20)

whereas at localized sources of quadrupole errors function w(€) exhibits a discontinuity:
Aw = —ige? P AG = —éle,BOeZi% : (A21)

where L is the source length. This fact can be used for identification of perturbing elements.
A.2.1 Near-resonance case

If the tune is close to an integer or a half integer the resonance harmonics n = Integer(2Qy)
dominates w(8):

wO) == g, = [ g g)dp (A22)

so that w(@) is about constant around the ring by the absolute value.

Since the effect of the focusing perturbations is resonantly enhanced the higher order terms in
the W expansion may become important. Dominance of one (resonance) harmonic in W makes
eq.(A.10) applicable leading to the result:
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—iargw

iargw

_ coshu e
T = _
e sinh u coshu

sinh ”} U= %Arc tanh 2 wl. (A.23)

It is exact when g(8) contains only one harmonic from the beginning. Of course, there is a well-known
exact expression for the tune in this case as well: (Q - n/2)* = (Qq - n/2)* - Ig_nlz.

Presenting the new eigenvectors (columns of matrix Vperturhed=VidealT'l) in the form (2.25) we
obtain for the perturbed lattice functions:

1+2 20, —
B = cosh 2u + sinh 2u cos(2¢, —argw) = | wlcos(2¢, —argw) ’
Po J1=41w? (A2

tanh u sin(2¢, —argw)

= ¢, —arctan .
=0 1+ tanhu cos(2¢, —arg w)

Recalling that in perturbation-free regions arg w =-20Qy8 + const we retrieve the well-known fact that
the beta-wave propagates at twice the betatron phase advance: 2¢ - arg w = 2¢y - const.

The beta wave of relative amplitude b = AS/f (= sinh 2u) increases the average value of f-
function over the beating period as

< B/ Py >=N1+b* (A.25)

However, the average value of the inverse f-function, <fy/f>, in the considered approximation does
not deviate from 1 by more than the relative tuneshift.
A3 Coupling perturbations
In this case the matrix of the perturbing Hamiltonian is:
0O 0 c, C
i 0 Cc. C
2lc, ¢
c_. C

| %
+ % |

U = (A.26)

*

-0 0
_Cci 0 0
with

C.(6) - R\ B, {(8Bx _aBy}ng[(ax ayJ_i( 1 _ 1 J]}ei@xm) (A27)

_— _+_
) 2Bp dx  dy Be By B By

being driving terms of linear sum and difference resonances; U, =0 for n >2. U, is in the range of

operator D, correspondingly K;= 0.
The matrix of the first-order generating function is easily found from eq.(A.13) to be

0 0 w, w_
woo| 0 0 —wDo—wy A28
1 — * ’ ( . )
w, —Ww_ 0 0
w_ —w, 0 0

with
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© T exp{-i(Q, +0,)[0 -6 —7sgn(6 -]}
Wi = - -
0 4sm7£(QxiQy)
In perturbation-free regions these functions are constant by absolute value: w«(8) = const X
exp[-i(Q+Qy)01]; at a localized coupling source they exhibit a discontinuity:
iCiL
Awy =——= A.30
+ 7R (A.30)

where L is the coupler length. This fact can be used for location of strong couplers.

When the tunes are close to either of the linear coupling resonances, A+= Q% O, - n+ =0, the
corresponding function (w, or w.) is dominated by the resonance harmonic

C+(0)do’. (A.29)

1 - 1 27 -
Wy = — cye ™% o =— |e"™YC,do A31
+ oA, + + 27[.([ + ( )

and is about constant around the ring by the absolute value.
A.3.1 Higher order effects

When Iw+| is not small compared to unity (due to either strength of coupling or closeness to a
resonance) the higher order effects may become important. Let us have a look at the second and third
order generating functions W,, W.

Contribution from W to the r.h.s. of the equation for W is

i(—C,w_+C_w,) iRe(C,w—C_w") 0 0
(W, U;) = iRe(C,w, —C_w_) i(-Ciw_+C_w,) | *0 ) | 8 Nt (A.32)
0 0 (Cow_+C-w,) iRe(Ciw, +C_w])
0 0 iRe(C,wi +C_w) i(Ciw_+C_wy)

The off-diagonal elements of the diagonal blocks render (upon averaging) the second-order tuneshifts:
1 2r 1 2r
AQ, = _Re [(C.wl ~C_w!)df, AQ,=——Re [(Cow}+C_w)do. (A.33)
V4
0 0

2
whereas the diagonal elements are responsible for the beta-beating which can be described by diagonal
blocks in W5 of type (A.19) with

27 ,2i0,0|0-0'-7sign(6-6)]
W, (0) = (C.w_—C_w,)dé’,
2 (6) { ez Cr »
27 e—2iQy0[9—6"—7rsign(9—9')]
Wo, (0) =— (C.w" +C*w.)db’,
20 £ 2sin2710,0 +)

For the second-order beta-beating to be noticeable the tunes should be close to the crossing
point of linear resonances: two one-dimensional half-integer resonances and two coupling resonances
(sum and difference). Such working points are often used in colliders since they minimize the beam-
beam tuneshifts.

If the working point is not close to both coupling resonances simultaneously we may neglect the
contribution from W, to higher order terms (but keep itself). Introducing matrix

(A.34)
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1
F=[W(e)de = W1+%W2+%W3, (A.36)

0
and ignoring the dependence of lw+l on € we obtain

cos K wy, /2 ulsink/k ulsink/k
1 _SF Wy, /2 COSK u, sSink/x u_sink/x
T !'=e™F = : . . . ; (A.37)
—u_sink/x  u,sink/kx COS K Wy /2
upsink/x —ulsink/x  wy, /2 Cos K
where
K=ylu_ > —lu, 17,
5 (A.38)

ns =y [1£ 221wy 2 —lws ).

Writing the new eigenvectors (columns of matrix Vperturbed=VidealT'l) in the form (2.21) we
obtain for the perturbed lattice functions (ideal lattice is assumed to be uncoupled):

1 o 1
B =P IcosK+§e 200y, 17, Gy =By +arg(cos K‘+Ee 2050y, ),
By = Byo cosK+Ee woy 17, @iy =@y +arg(cos K+§e Way),
sin? & i i i i (A.39)
19, =10, 1Q,, =10,
By =By ;e Pu_—e Ul %, Py = arg(—e Pu_t+e V0ul),
K
sin? k. ; ; ;
ﬁxZ = ﬁxO 2 ! ewjxoui + e"¢x0u+ |2’ ¢x2 = arg(ewjxol’tf + e"¢x0u+ )
K
For function @ we have in the considered approximation
w=sin’x. (A.40)

Comparing with eq.(2.23) we obtain for Edwards-Teng’s “symplectic rotation” angle ® = k. We see
that this angle becomes imaginary when the sum resonance dominates (|w.|>1w_.l) in agreement
with Y.Luo’s results [6].

APPENDIX B. TUNE EVALUATION FROM TBT DATA
Let us first introduce continuous Fourier transform (CFT) and its inverse:
N .
" (B.1)

1
x, = N[ " DX v)dv.
0
For harmonic oscillations, x,.1 = a cos(2zvn +¥), the transform is

20



X)) = %[e_m(V—Vo)(N—l)HwF(V —Vy)+ e_m(V+V0)(N‘1)‘i'/’F(V +vo)l, (B.2)

. . . . . . where
1 F(v)= M . (B.3)
08 | ] Nsinzv
/v Discrete Fourier transform picks up X(V)
s °°r i | values at v=14=(k-1)/N (see Fig.7). The simplest
ol - K | estimate of the tune (1-point formula) is vy = v} with k
[ 0 corresponding to the maximum value of Xj = IX(1)l.
02 Y IR RWH 1 The error of such estimate is ~1/N.
™ o\ e /N One may try to fit the TBT spectrum using

O 1 i L i | N 1 X L L 1 .
D45 05 085 0B 085 07 075 model spectral function
Ay

FIG. 7. Schematic of TBT spectrum and sampling Sy) = a2\ F Ve = Vo)l (B.4)
points for discrete Fourier transform. 2

Since the model contains just two parameters, a and

Vo, just two Fourier components X; are necessary. Choosing the largest two and assuming Vi1 < W< W
we obtain the 2-point formula first derived by E.Asseo (see Ref.[15]):

Xk—l SiIl(?Z'/ N)

. (B.5)
X, +X;_cos(r/N)

1
V() = Vk ——arctan
T

Even in the case of harmonic oscillations this formula is not exact since model (B.4) does not
include the contribution from the mirror-symmetric peak, the error being ~1/N°. The accuracy may
become significantly worse in the presence of alien spectral lines (e.g. synchrotron sidebands) and
random noise. For instance, if their contribution is large enough to make X 44+, higher than X ;; in the
situation depicted in Fig.7 then the calculated tune will lie on the wrong side of v, resulting in an error
~1/N.

To reduce sensitivity of the method (called interpolated FFT) to the noise one may try to use
more points, e.g. three with the highest peak in the middle. Since only two points are really necessary
there is no unique expression; we offer the following formula

" Sign(Xk+1 - Xk—l) arctan 2Xk—1Xk+1 Sln(ﬂ-/N) .
z X (X g1 + Xpp)

V() = Vk (B6)

Let us compare its precision with the 2-point formula in the case of signal contamination with
an alien mode assuming for simplicity Vo= v = (k -1)/N:
X,41 =cos(2mvn)+ ecos(2zv n). B.7)
Retaining only the first order correction in £ we get for the tune error dv; from eq. (B.5)

an 780, = £ |siPNxA|sin(z/N)z w2 (B.8)
N sin[z(A-1/N)] N2 2|

where A=V, - W, while from the 3-point formula (B.6) we obtain
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|tan7£§1/0| =%tan% ~ = (B.9)

N2
independently of A. With typical distance to the alien lines A=10" +107 the error of the 2-point formula
can be by one-two orders of magnitude larger than that of the 3-point formula.
Unfortunately, the 3-point algorithm fails as well when the sign of X 44 - X 4.1 is reversed by
noise. So the most reliable method of tune evaluation is finding the maximum of CFT.

APPENDIX C. ERRORS DUE TO RANDOM NOISE

Let us consider the effect of random uncorrelated errors (e.g. LSB)

Xn+l = aCOS(ZWOn + W) + §n+1 > <§n§m> = 62§mn ’ (Cl)

on the precision of determination of tune, amplitude and phase by continuous Fourier transform. For
tunes sufficiently far from half-integer values the second term in eq.(B.2) can be dropped and we have
at small tune deviations A=v-

71'2(2N2—3N+1)A2 1 ¥

; ] +Nze—2’”'<"‘”vo [1-27i(n~1AJE, . (C.2)

X(v) :gei“’[l—ﬂi(N “DA-

n=l1
Maximum of IX( V)| is reached at
6 N
A=———— > (N +1-2m)sin[22vy (n =) + Y15, , (C.3)
aAN(N- -1Da” 5
so the r.m.s. tune error is

o, =< AL > = Voo (C4)

7ZN3/2a

R.m.s. errors in amplitude and phase of X(w) are

V20
N1/2 ’

V20

N1/2a

Ty =y<2|X(v)|—al® > =
(C5)

Oy :\/< arg2 X(vy)> =

Errors due to random noise decrease with the number of turns N much slower than errors due to
alien modes, Hanning windowing does not reduce them.

APPENDIX D. TUNES OF COUPLED OSCILLATIONS
In the case when functions C+(8) defined in eq.(A.27) contain only one harmonic each:
C,(0)=cpe ™7, (D.1)

it is possible to find the coupled tunes exactly.
Introducing new variables
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by =a,exp(i™=0), by = ay exp(-i"=0), (D.2)

we get from eqs.(2.21), (2.24) and (A.26) equations of motion with constant coefficients

b =iq,.b, +lc+b +— c_by,
22 (D3)

; . I %, % l

b, =iqb, +5c+bx+§c_bx,

where g,y =0y y0- (nst n.)/2.

Eqgs.(D.3) and their complex conjugates present a system of four equations for the components
of vector b = (b,, bx*, by, by*). Finding the particular solutions we may ignore the requirement of b,, b,,*
being complex conjugates but satisfy it later in the global solution.

Looking for b ~ exp(ig€) we find four eigenvalues

> L oo 501 2.2 2| 2 2 2
QI,ZZE(Qx—i_Qy) 4C+ _‘ \/(Qx Qy) _(Qx_Qy) Cy +(Qx+Qy) ‘C— (D.4)
43,4 =—41,2-

When either ¢, = 0 or ¢.= 0 we obtain well known results
1
2= la.+a, i\/(qx -q,)° +‘c3‘]2, ¢, =0,
(D.5)
g —q, 2 @ va )P -|e2?, e =0
2_4(]x Qy— QX q); C+ , C_=VU.
The effect of ¢, on the tune difference (as well as that of c. on the tune sum) is small,
2 2 Cic%‘
91—6122\/(61x—61y) +‘C—‘>< 1+ +..r, (D.6)

2(44,9, —‘CE‘)[(qx -q,) +‘cf‘]

and can be ignored in practical calculations as has been done in eq.(4.15)
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